
 November 19, 2012

MEMORANDUM FOR: WCOSS Programmers

 FROM: NCEP/Central Operations/Production Management Branch

 SUBJECT: Technical policy for implementation standards on the Central

 Computer System (CCS)

This document outlines policies and technical guidelines for consideration when implementing

operational computer code or "numerical models" on the WCOSS. The formal process to request a

change or addition is a Request For Change (RFC) and is discussed in another document. However,

during the transition from CCS to WCOSS, developers should use the WCOSS Transition Request form,

v 1.0.0, which is available from the Centers’ Transition Points of Contact.

The goal of this document is to discuss and provide examples of operational quality code and scripts, set

forth best practices in coding, establish a common base of coding standards, and provide a means for

improving coding techniques and best practices.

Most often, a request for change will be composed of changes to compiled code and changes to scripts

and other interpreted files that call the compiled executable code. It is recommended that the scripts and

executable code called by those scripts be grouped together in some logical fashion. Many developers

will replicate the directory structure of /nwprod when organizing the files, scripts, and executable source

that comprise the requested change. While this is not mandatory, and may be governed by the

complexity of the change requested, it will be easier for the production staff to implement if the location

of the changes is easily understood and familiar.

Code Delivery guidelines - Section 1 (Source code / compilable code / binary executable code)

a) All of the files needed to completely build the executable should be available in one place on the

WCOSS. This does not include system or standard production libraries, but the make process should

contain references to standard production libraries found in /nwprod/lib and standard system libraries.

b) Use a readme file in the top level source directory to explain the build process if it requires choices be

made during the compile or if it is in any way non-standard. An explanation of how to build in the same

directory as the source will eliminate confusion and errors if it becomes necessary to rebuild the

executable to resolve a production failure or other emergency situation.

Further discussion

1. Realizing that there are some constraints on how source code can be packaged, it is advantageous for

the production implementation team to be able to understand how the pieces fit together. Source

code that forms an executable or group of related executables should be contained in a directory; and

while that directory may contain other sub-directories, the compilation scripts, makefiles, and

documentation for building the executable should be easily understandable. If there are specific

sequences of scripts to be run and options that need to be chosen during the build, they should be

clearly specified in a readme file in the top level source directory.

2. The source code directory must be available on the WCOSS and must be accessible by NCO's

implementation staff. (Do not put files in HPSS). All of the source code (main program and

subroutines) required to execute your program must be included in this directory as separate files (no

concatenated files). We will not selectively copy routines from your directory. We will not include

or link source or executables from private libraries. To ensure that the latest version of the source

code is used, programmers should start with, and modify, the operational source code which they

have copied from /nwprod/sorc.

3. It is preferable for the top level source code directory to have a makefile that does everything needed

to build the executable. It is also preferable to have the executable name be the same as the source

directory that will contain it; in this way automated scripts can batch process the building of

executables and move them to the main executable directory when a mass build is needed.

4. When the make process produces more than one executable please make sure that the final step

copies the executables to the top level source directory and their filenames are correct for all the

scripts that use them. If different compiler options are needed for each subroutine, then it is the

programmer's responsibility to include these options in the makefile.

5. C and Fortran compilers should be Intel (ifort and icc). If you must use the gnu compilers, be

prepared to make your case as to why these are needed over the Intel compilers.

Documentation Blocks (DOCBLOCKS)

The goal of documentation should be to help understand what the code does. From a production

perspective, documentation blocks can help troubleshoot a problem and help the staff remedy a problem

more quickly. Sometimes too much information is as bad as none at all. Below is a suggested format and

information outline for a docblock. We ask that you use your judgment in what information will be of

most help and include it within your code.

UNIX Script Documentation Block

Script Name:

RFC Contact:

Abstract:

Script History Log:

Usage: <Specify typical arguments passed>

Script Parameters:

Modules and Files referenced:

scripts: <file names of scripts called by this script>

parms: <file names in the parm directory the script uses>

fix: <file names in the fix directory the script uses>

executables: <compiled code this script calls>

Condition codes:

< list any exit condition or error codes the script returns if

any >

If appropriate, descriptive troubleshooting instructions or

likely causes for failures could be mentioned here with the

appropriate error code

User controllable options: <if applicable>

Attributes:

Language: RedHat Linux

Machine: NCEP WCOSS

Makefiles

Makefiles provide the rules to the "make" command, which creates the executable from source code(s).

Makefiles should create one executable. The name of the executable and the name of the directory

containing the source code to make the executable should be named the same with the addition of the

appropriate extension (.fd, .cd denoting Fortran or C code respectively) at the end of the directory name.

Wx_control2rule_the_world.fd would therefore contain Fortran code and a makefile to produce the

wx_control2rule_the_world executable which would be created in the wx_control2rule_the_world.fd

directory when compiled.

Complex makefiles that require configuration steps should have a README file detailing those step-by-

step instructions.

Makefiles that must produce more than one executable should also have a README file explaining this,

and the executables produced should have the correct name as specified in the RFC and README. The

executables should be available in the top level source directory when the compilation is complete.

If a makefile has a dependency on another code (for example, the NAM post-processor code uses WRF-

specific libraries created when the NAM forecast model is compiled), that code must either already exist

in production or be part of the RFC package. Detailed instructions should be provided to NCO,

instructing them as to what code in the RFC package should be compiled first if such dependencies

exist.

Please do not specify an absolute path outside of the source code directory to copy executables, libraries,

or any other products. NCO will compile and test program functionality in parallel and test

environments before implementing into production.

The following makefile shows the preferred format, but programmers are free to create (and test) their

own.

Makefile example, where TARGET=the name of your code:

###

#########

Makefile for xxx <This is the Documentation Block containing

instructions and use>

Use:

make - build the executable

make clean - start with a clean slate

###

#########

Define the name of the executable

TARGET = your_model # The name of the executable produced #

CPP, Compiler, and Linker Options

FC = ifort # Fortran compiler used #

CPP = icpc

CPPFLAGS =

Optional compiler directives

OPTS = -auto -xHost

LIST =

FREE =

FIXED = -fixed

TRAPS =

PROFILE =

DEBUG =

MEM =

MAP =

W3LIBDIR = /nwprod/lib

There may be other definitions listed here

depending on the needs of the code to produce the executable

Assemble Options

FFLAGS = $(OPTS) $(LIST) $(TRAPS) $(PROFILE) $(DEBUG)

FFLAGST = $(OPTS) $(LIST) $(FREE) $(TRAPS) $(PROFILE) $(DEBUG)

LDFLAGS = $(MEM) $(MAP) $(SMP) $(PROFILE)

LIBS = $(SEARCH) $(NCDLIBS) -L$(W3LIBDIR) -lw3nco_4 –lw3emc_4

-lbacio_4

Threaded object files

OBJST= WRFBDYGEN.o

Non-threaded object files

OBJS= COMBC.o

Includes

INCLUDES= parmeta.res

Common Blocks

COMMS=

DEPS= $(COMMS) $(INCLUDES)

.SUFFIXES: .F .f .o

.F.f:

 $(CPP) $(CPPFLAGS) $< > $*.f

$(TARGET): $(OBJS) $(OBJST)

 $(FC) $(LDFLAGS) -o $@ $(OBJS) $(OBJST) $(LIBS)

$(OBJS): $(DEPS)

 $(FC) $(FFLAGS) -c $<

$(OBJST): $(DEPS)

 $(FC) $(FFLAGST) -c $<

clean:

 /bin/rm -f $(TARGET) *.lst *.o *.mod

End of sample makefile

This is only intended as an example. Different formats are acceptable as long as they are easily

understood and correctly produce the intended executable.

Fortran Unit Number Assignments

We understand that some application source code is used by a community of scientists and numerical

modelers, and that it is impractical to assign specific unit numbers to files used in Fortran executables.

However, in code that still uses static units, and where the flow of operation is simple, please make an

effort to use a standard or consistent assignment strategy.

It is useful to have a consistent standard for all input and output across all programs to aid in

troubleshooting failures and provide a means to quickly understand how data is being used.

As an example, the following convention may be helpful:

1) Units 1 through 4, 7 through 10, and 50 are reserved for future use.

2) Use units 5, 11-49 for all INPUT files; i.e., all files containing data created prior to the execution of

the program.

3) Use units 6, 51-79 for all OUTPUT files; i.e., all files containing data for subsequent programs to

use.

4) Use units 80-94 for all WORK files; i.e., all files that are written and read in the same program but

have no further use.

Except for work files, the same unit number should NEVER be used for both input and output by the

same program.

Note:

Users should associate filenames to unit numbers in the shell script prior to program execution. On the

IBM WCOSS, users should us the environmental variable FORTk, where k is a 2 digit number (if unit

number is less than 10, use a leading 0). Note that on the CCS, under XL Fortran's runtime

environment, setting unit_vars=yes let one connect a file of one’s choosing to Fortran unit k (opened

without a filename, of course) by assigning its name to the environment variable XLFUNIT_k. Under

Intel Fortran, one can achieve the same end by using environment variable FORTk. No other

environment variable needs to be set for the Intel runtime library for this to work. Filenames should not

be hardwired in the source code.

Example:

 export FORT16="inputfilename"

 export FORT60="outputfilename"

Code Delivery guidelines - Section 2 (Scripts and other interpreted files)

1. The location of the script necessary to execute the code must also be listed on the RFC if the

script is being changed. To ensure that the latest version of the script is used, programmers

should start with the operational scripts which they have copied from /nwprod and then make

modifications to those scripts in their development workspace.

2. Your directory must also contain any new or modified parameters or fixed fields needed by the

code.

3. When preparing operational scripts, the following standard must be followed. See Attachment

III for examples and general information which will be helpful in developing production scripts.

a. Use Bash (/bin/sh, which defaults to /bin/bash on WCOSS) or Korn Shell (/bin/ksh) .

b. Obtain the NCEP production dates by using the setpdy.sh production utility located in

/nwprod/util/ush.

c. Logging must be turned on via a "set -x" command at the top of the script.

d. Utilize standard environment variables (See Table 1-5 in Attachment III).

e. Utilize standard production file and naming conventions.

f. Each block of copies from the scratch directory to /com,/nwges or /pcom must be wrapped

with logic testing for the presence of the variable SENDCOM.

g. Each block of dbnet alerts must be wrapped with logic testing for the presence of the variable

SENDDBN.

h. Each execution of a C or Fortran code must be wrapped with the use of production utilities

prep_step, startmsg and err_chk. The standard error should be redirected to a file named errfile

in the current working directory. The standard output of each execution should be appended to

$pgmout (standard production variable).

i. In each system of scripts, the top level script creates and initializes the standard production

environmental variables and resides in /nwprod/jobs with the standard naming convention of

JXXXX. The top level J-job script calls the main driver script which resides in /nwprod/scripts

with the standard naming convention of exXXX.sh.ecf. Any needed sub-scripts to the main

driver script will be located in /nwprod/ush or /nwprod/util/ush.

j. Production utilizes a centralized cleanup and creation of directories in /com and /nwges.

Production scripts should not remove or create production directories at the

/com/$NET/$envir/$RUN.$PDY level.

k. Remove development tools such as hpmcount before submitting to PMB.

l. Remove references to developer work areas.

Code should be written from an operational perspective

Diagnosing failures quickly is a necessary requirement of the operational staff. To that end, all code

should be scrutinized for stability and ease of troubleshooting. It is not practical to discuss all of the

steps that can or should be taken to write operational quality code, but here are some things that should

be considered;

Notification of use of backup data

For scripts that have a secondary (or beyond) data source to be used when the primary data is not

available, the script should include a message that indicates the primary data is not available and backup

data is being used. If use of backup data is a concern to the developer (i.e. if continued use will result in

a degraded product), he/she should include code in the script to email a message re: the use of the

backup data.

Descriptive error messages

Executable code should be written so that if a failure occurs, the context of that failure is communicated

as descriptively as possible. Failures should not be allowed to propagate downstream of the point where

the problem can be detected.

Appropriate modes of failure

An executable should not terminate abnormally with a segmentation or memory fault for errors that are

discoverable / trappable. For example, lack of input data should be handled either in the script before the

executable runs, or by the executable if checking in the script is not practical. If a script is able to use a

backup form of input data (in case the primary data is unavailable), the developer should design the

script to use the backup data and supply a meaningful message indicating the use of the backup data.

For cases where it is undesirable to use the backup data for more than a short period of time, the

developer should work with NCO’s SPA team to include coding in the script which checks for the

presence of the primary data and alerts NCO and/or the developer if that data is unavailable.

Saving standard output

To ensure that all standard output from the code get saved (whether it fails or not) users should make

sure that the standard output file (called $pgmout) is written at the end of the job, by adding "cat

$pgmout" at the end of the top-level J-job script. If the standard output file is very large, users should

reduce the number of print statements in their codes to make the standard output file size more

manageable.

Error handling

Proposed set of error codes for at least some categories of errors - this may be as simple as a list of

numerical codes resulting from calling STOP XXX in Fortran, or exit(XXX) in C where XXX is a

numerical code agreed upon by EMC and NCO for certain classes of errors. This will enable the

operations staff to more quickly and accurately determine the failure mode and hopefully resolve the

problem.

Fatal errors should preface the error message with "FATAL ERROR." Warning or non-fatal errors

should preface the error message with "WARNING."

Code should be written to minimize the time it takes to re-run a failed job.

In places where restarts can be applied to save time when recovering from a failure, they should. Long

running jobs that have multiple executable calls might be a good candidate to break into two smaller

jobs so that if a failure occurs, only the problem part need be re-run and the time to completion is

shorter.

Pre-delivery testing and SPA testing

All codes/scripts must be tested by the developer prior to submission of one or more Requests for

Change (RFC) for production implementation. The PMB Senior Production Analyst (SPA) team lead

will review submitted RFCs for completeness and will then assign the RFCs to a SPA. Incomplete

RFCs may be returned to the developer. The SPA will then set up the code/scripts in either the nwtest or

nwpara environment for pre-implementation testing. The SPA will contact the developer with any

questions and will ask the developer to validate the output from any tests run prior to implementation.

Code Delivery Guidelines Section 3 - (Production directory structure and Utilities)

Production Directory Structure

Table 1-1 shows an overview of the directory structure necessary to run production.

Table 1-1 Directory Structure

Directory Description

/nwprod Production Applications

/nwtest Test Applications

/nwpara Parallel Applications

/nwbkup Backup of Production Applications

/nwges Model Spin-up Data

/com Data and Application Output, Including Outgoing

Products

/dcom Incoming Data

/pcom Outgoing Products with WMO Headers

Structure of Application Directories

Table 1-2 shows an overview of the application directories. The directory names are the sub-directories

within /nwprod, /nwtest and /nwpara.

Table 1-2 Application directories

Directory Description

Jobs Wrapper Scripts (J-Jobs)

Scripts Main Driver Scripts (ex-scripts)

Ush Utility Scripts

Fix Static Input Data

Parm Static Input Data

Exec Executables

Sorc Source Code

Util Utilities spanning multiple applications

Structure of /nwges Directory

Several of the weather forecast models running in production produce output to be used later as input for

subsequent model runs. This select set of critical output data used to begin model runs is often referred

to as model guess fields. The model guess fields are stored in /nwges. Table 1-3 shows the directory

structure of /nwges.

Table 1-3 /nwges Directory Structure

Directory Description

prod/model_name.YYYMMDD Production Spin-up data for model

test/model_name.YYYMMDD Test Spin-up data for model

para/model_name.YYYMMDD Parallel Spin-up data for model

Structure of /com Directory

The /com directory contains output data, stdout and stderr from production jobs. The default resident

time for data in /com is ten days. Table 1-4 shows the directory structure of /com.

Table 1-4 /com Directory Structure

Directory Description

model_name/prod/net_nam.YYYYMMDD Production Model Output for a day

model_name/test/net_name.YYYYMMDD Test Model Output for a day

model_name/para/net_nam.YYYYMMDD Parallel Model Output for a day

output/prod/YYYYMMDD Production job stdout/stderr for a day

output/test/YYYYMMDD Test job stdout/stderr for a day

output/para/YYYYMMDD Parallel job stdout/stderr for a day

Logs Log files

Standard Environmental Variables

Inside of the production scripts there are environmental variables reserved for production use. A

majority of the production utilities rely on the use of these standard variables. These variables are set

inside of the production wrapper scripts. Unsetting or programming around these variables inside of the

driver and supporting scripts may result in an undesired job outcome making it difficult to troubleshoot.

Table 1-5 shows the list of the standard environmental variables used in production.

Table 1-5 Standard Environmental Variables

Variable Name Description

PDY Today’s Date formatted YYYYMMDD

PDYm1-7 Date 1-7 days ago formatted YYYYMMDD

PDYp1-7 Date 1-7 days ahead formatted YYYYMMDD

DATA Temporary Working Directory

Jlogfile Logfile of start time, end time, and error messages

of all jobs

Outid Job ID appearing in jlogfile

Jobid Name of stdout file for all programs in a job

Cycle Model Cycle time formatted tHHz

Cyc Model Cycle time formatted HH

SENDCOM Enable/Disable file copying to /com

SENDDBN Enable/Disable DBNet Alerts

SENDECF Enable/Disable ecFlow hooks

NET Model Name

RUN Type of model run

Pcom Directory for copies to /pcom

COMIN /com directory for data input

COMOUT /com directory for data output

GESdir /nwges directory for read and write

utilities Directory containing utility scripts

utilexec Directory containing utility executables

EXECmodel_name Directory containing model executables

FIXmodel_name Directory containing model fix files

PARMmodel_name Directory containing model parameter fields

USHmodel_name Directory containing supporting model scripts

ECFBIN Directory containing ecFlow executables

Envir = Prod, para, or test. Set in production ECF

script; do not reset in subscripts

Standard File Naming Conventions

Production file names should represent the name of the model run, the cycle of the model run, the type

of data the file contains and the forecast hour the data represents. Filenames should not contain the date

as the directory in which it resides already represents the date. Filenames should not contain uppercase

characters.

Example:

 gfs.t${cyc}z.pgrbf${fhr} where cyc is the cycle and fhr is the forecast hour.

Basic Production Utilities

There are several utilities available in production to help you incorporate the basic job functionality

required to meet operational standards. This section is intended to introduce you to the basic utilities

used by most production jobs.

Date Utilities

Developers should use the production date utilities and should ensure their scripts will work as expected

when crossing over the new year. The following examples show how to use the production date utilities.

finddate.sh

Given a date, finddate.sh will return date a specified number of days before or after the provided date.

finddate.sh will also provide a sequence of dates leading to the specified number of days before or after

the provided date. Example 2-1 shows how to use finddate.sh.

Example 2-1 Script Using finddate.sh

#!/bin/sh

utilscript=/nwprod/util/ush

today=20120101

Single Date Example

ten_days_ago=`sh $utilscript/finddate.sh $today d-10`

ten_days_ahead=`sh $utilscript/finddate.sh $today d+10`

Sequence Example

last_four_days=`sh $utilscript/finddate.sh $today s-4`

next_four_days=`sh $utilscript/finddate.sh $today s+4`

echo "Today's Date is $today"

echo

echo "The date ten days ago was $ten_days_ago"

echo "The date in ten days will be $ten_days_ahead"

echo

echo "The last four days were $last_four_days"

echo "The next four days are $next_four_days"

Example 2-1 Output

Today's Date is 20120101

The date ten days ago was 20111222

The date in ten days will be 20120111

The last four days were 20111231 20111230 20111229 20111228

The next four days are 20120102 20120103 20120104 20120105

setpdy.sh

This script helps you set the variables PDYm1-7, PDY and PDYp1-7. This utility will output a file PDY

in the current working directory which can be sourced in the parent script to set the PDY variables.

setpdy.sh expects the environmental variable cycle to be set when executed. The default centered date is

the current day’s date. If the environmental variable PDY is set when executed, the centered date will

be the value of PDY.

Script setpdy.sh uses date files in /com/date set by ecFlow production jobs /prod00/ncepibm00/j100_00

and /prod12/ncepibm12/j100_12, run at 2330 UTC and 1130 UTC respectively. At 2330 UTC, the date

files for cycles 00-11 UTC are set ahead to the next day. At 1130 UTC the date files for cycles 12-23

UTC are set ahead to the next day. Therefore, if you were to set cycle to t12z and run setpdy.sh between

2230 and 1130 UTC, you would get a PDY file centered on the previous day’s date. This is because the

12 UTC cycle has not started. This has been done by design to allow 12 UTC production jobs to be run

late into the 00 UTC cycle. Example 2-2 shows how to use setpdy.sh.

Example 2-2 Script Using setpdy.sh

#!/bin/sh

#note that on WCOSS, /bin/sh defaults to bash.

export utilscript=/nwprod/util/ush

If PDY is not set, the dates would be centered based off the current cycle date.

Try running with PDY not set to see what happens.

export PDY=20120101

export cycle=t12z

$utilscript/setpdy.sh

. PDY

Example 2-2 Contents of File PDY

export PDYm7=20111225

export PDYm6=20111226

export PDYm5=20111227

export PDYm4=20111228

export PDYm3=20111229

export PDYm2=20111230

export PDYm1=20111231

export PDY=20120101

export PDYp1=20120102

export PDYp2=20120103

export PDYp3=20120104

export PDYp4=20120105

export PDYp5=20120106

export PDYp6=20120107

export PDYp7=20120108

Logging and Error Checking Utilities

All production scripts must adhere to a standard error checking methodology. The reasoning behind this

is to avoid lost time in having to re-run preceding jobs when failures occur. The earlier a failure can be

caught, the less time it takes to recover from that failure.

Providing notification that a part of a sequence of job steps has failed should be a logical process. If a

subsequent job or part of your application depends on the successful completion of a prior executable or

processing operation, then that dependency must be checked for successful completion and a failure

message returned if it does not. There are no exceptions to this rule.

If your application can continue if a preceding step fails, it should be documented in a comment in the

script just before or after the relevant part is called.

setup.sh

To properly execute a program inside of a production script you must use runtime compiler options to

pass the program its unit assignments, log its start and stop time, check its return code and execute

appropriate ECF hooks respective to the return code. This all sounds daunting but setup.sh will assist

you in meeting these standards by gathering the needed utilities into your scratch area. After running

this script, the utilities prep_step, err_chk, err_exit, postmsg and startmsg will be available for use.

These five utilities are described below. You should always run setup.sh every time you change

directories in a script; this will ensure the utilities listed below are available in your current working

directory.

 prep_step

In production, for the IBM WCOSS, the environmental variable FORTk (where k is a 2-digit number) is

used to pass unit assignments to the program. Since there may be multiple Fortran programs running

inside of a job, these variables must be reset before each program execution. Running prep_step before

each program execution will unset all FORTk variables currently set in the environment.

 postmsg

postmsg simply writes a message to a log file. The first argument is the log file name and the second

argument is the message. You should use the log file named /com/logs/jlogfiles/jlogfile.${pid} (where

${pid} is the process id associated with your job and which is set in your J-job script) when using

postmsg in a production job.

err_chk

The script err_chk is used to check for a non-zero return code of a program execution and run a series of

commands based on this return code. If a program executes with a return code of zero the end time is

logged and job execution continues. If a non-zero return code is found stdout/stderr are written to the

job output log, the time of the error is logged, an abort flag is sent back to ecFlow and the job is

cancelled. The return code is passed into err_chk by setting the environmental variable $err.

err_exit

The script err_exit performs the same tasks as a non-zero return code passed to err_chk.

startmsg

startmsg simply posts the start time of the program to be executed to a log file. The name of the log file

is set through the standard environmental variable called jlogfile. Example 2-3 shows how to use the

above 5 utilities.

Example 2-3.

This example shows the typical flow of control through a set of scripts that are generally used in

production. For the control of job submission NCO uses a program called ecFlow which resides on two

separate nodes (production and backup) on each WCOSS system. EcFlow has a graphical- and text-

based interface, and allows job submission and scheduling based on time, another job's state, and other

mechanisms to control when jobs are submitted to WCOSS.

Ecf script and def files control all of the ecf triggers and submission criteria. While it is NCO's

responsibility to manage the ecf scripts, it is the responsibility of the programmer to provide relevant

information regarding resources needed on WCOSS, time to run, and dependencies. The detail of this

information can vary greatly depending on how complex the program or model is, and how often it

needs to run. This information must be included in the Technical Impact Statement on the RFC form.

RFCs missing this information will be returned to the developer.

Example 2-3 shows simple job scripts that execute a Fortran program using the utilities described above.

A majority of the environmental variables set are standard variables used by these production utilities as

listed in Table 1-5. To run this example script as a batch job you must use the bsub command on the

IBM WCOSS. This example will create a job output file (jlogfile.${pid}) and a subdirectory in your

current working directory. The output file jlogfile.${pid} is a log of the start and end times of the job

and Fortran executable. The subdirectory will contain all the utilities discussed above plus the input and

output files created by the script and executable.

Example 2-3 Job submission script
In production, the job submission scripts reside on the ecFlow node and may only be modified by the

SPA team. A production version of this script would normally include more variables to establish and

maintain a conversation with the production ecFlow node. This example contains only basic job card

information and some "standard" variables used in all jobs, as such it can be submitted (using bsub) to

WCOSS manually. The ecFlow node has a mechanism to call bsub within its configuration.

#BSUB -J jwx_control2rule_the_world

#BSUB -o /com/output/test/today/wx_control2rule_the_world.o%J

#BSUB -e /com/output/test/today/wx_control2rule_the_world.o%J

#BSUB -L /bin/sh

#BSUB –q prodser

#BSUB –cwd /tmpnwprd

#BSUB –W 01:00

#BSUB –P OBSPROC-OPS

#BSUB =M 500

#BSUB MP_TASK_AFFINITY=core:1

export MP_SHARED_MEMORY=yes

export MEMORY_AFFINITY=MCM

EXPORT list here

set -x

export envir=test

export job=`date –u +wx_control2rule_the_world_%%H%%M`

export cyc=`date –u %%H`

export ffhr=0

ECF_NAME=%ECF_NAME% export ECF_NAME

ECF_NODE=%ECF_NODE% export ECF_NODE

ECF_PASS=%ECF_PASS% export ECF_PASS

ECF_PORT=%ECF_PORT% export ECF_PORT

/nw${envir}/jobs/JWX_CONTROL2RULE_THE_WORLD

This is the end of the job card sample; typically this last line calls the job script which resides on

WCOSS. Note that the environment variable that determines if the job will be run in prod, para, or test

was set a few lines above the J-job script.

The LSF equivalents for CCS LoadLeveler commands (e.g. total_tasks, tasks_per_node, task_affinity,

etc.) may be found at http://ibmdocs.ncep.noaa.gov/tide.

It is the responsibility of the developer to determine and provide the system resource requirements

in the RFC’s Technical Impact Statement, including expected runtime, nodes, consumable memory, and

tasks, if applicable.

Example 2-3 J-job Script Using Utilities from setup.sh

This begins the sample of the job scripts. Typically, the ecf job card (example shown above) will call the

appropriate Job script (also referred to as the J-job) in /nw${envir}/jobs where ${envir} refers to an

exported variable corresponding to prod, para, or test.

Job scripts can further call "model" scripts (also called ex-scripts) in the /nw${envir}/scripts directory

which can call other utility or "ush" scripts in the /nw${envir}/ush directory and Fortran and/or C

executable code in the /nw${envir}/exec directory.

It is important to note that the Job script should set up the entire environment for the scripts and

executables that it calls through the use of exported variables. To test a job in a different environment, it

should only be necessary to change the exported variables in the job script. Other scripts should not alter

the COMIN, COMOUT or other file location variables established in the Job script, and those location

variables should always be used in all downstream scripts.

Further, no output files should be written to a path using a location variable defined as being used for

input files, as this can cause testing to overwrite and corrupt production output.

SAMPLE J-JOB SCRIPT JWX_CONTROL2RULE_THE_WORLD

set –xa

ecflow_client –init=${ECF_RID}

export PS4='$SECONDS + '

date

#####################

#Determine job output name on the system

#####################

export pid=$$

export outid="LL$job"

export jobid="${outid}.o${pid}"

export pgmout="OUTPUT.${pid}"

export DATA=/tmpnwprd/${job}.${pid}

mkdir –p $DATA

cd $DATA

export cyc=t${cyc}z

export NET=gfs

export RUN=gfs

##################################

setup jlogfile

##################################

export jlogfile=/com/logs/jlogfiles/jlogfile.${pid}

####################################

SENDECF - Flag Events on ecFlow

SENDCOM - Copy Files From TMPDIR to $COMOUT

SENDDBN - Issue DBNet Client Calls

#####################################

export SENDECF=YES

export SENDCOM=YES

export SENDDBN=YES

####################################

Specify Execution Areas

####################################

export HOMEmodel=/nw${envir}

export EXECmodel=${HOMEmodel}/exec

export FIXmodel=${HOMEmodel}/fix

export USHmodel=${HOMEmodel}/ush

export PARMmodel=${HOMEmodel}/parm

export PARMutil=/nwprod/util/parm

export FIXutil=/nwprod/util/fix

export USHutil=/nwprod/util/ush

export utilscript=/nwprod/util/ush

export utilities=/nwprod/util/ush

export EXECutil=/nwprod/util/exec

##############################

Run setup to initialize working directory and utility scripts

##############################

sh ${utilscript}/setup.sh

##################################

Run setpdy and initialize PDY variables

##################################

${utilscript}/setpdy.sh

. PDY

##################################

set COMIN, COMOUT, first guess directories

##################################

export COMIN=/com/${NET}/${envir}/${RUN}.${PDY}

export COMOUT=/com/${NET}/${envir}/${RUN}.${PDY}

export GESDIR=/nwges/${envir}/model.${PDY}

mkdir =p $COMOUT

##################################

execute the script

/nw${envir}/scripts/exwx_control2rule_the_world.sh.ecf

##################################

date

ecflow_client –-complete

cd /tmpnwprd

rm –rf $DATA

Example 2-3 Sample ex-script exwx_control2rule_the_world.sh.ecf

#!/bin/sh

set –x

cp $COMIN/inputfile .

startmsg

Pgm=`basename $EXECscript/wx_control2rule_the_world`

. prep_step

$EXECmodel/wx_control2rule_the_world >> $pgmout 2> errfile

err=$?

if [“$err” –ne 0]; then

 msg = “my code failed”

 postmsg “$jlogfile” “$msg”

 errexit

else

 msg = “success”

 postmsg “$$jlogfile” “$msg”

fi

if $SENDCOM = YES

 if [-s outputfile] then

 cp outputfile $COMOUT

 fi

fi

######################################
GOOD RUN

Set +x

Echo “**************JOB WX_CONTROL2RULE_THE_WORLD COMPLETED NORMALLY”

Echo “**************JOB WX_CONTROL2RULE_THE_WORLD COMPLETED NORMALLY”

Echo “**************JOB WX_CONTROL2RULE_THE_WORLD COMPLETED NORMALLY”

#######################################

Msg=’job completed normally.’

Echo $msg

Postmsg “${jlogfile}” “${msg}”

Exit

######## END OF SCRIPT ########

Conclusion

Each model is different and requires creative techniques to achieve the best forecast. It is not the intent

of this document to limit creativity or squash innovation. It is necessary to establish and promote the use

of common utilities, directories, and practices that lead to more efficiency when testing a change; and

when troubleshooting failures. These guidelines will continue to evolve and with everyone's help

become more complete in well thought out processes and best practices.

